Laborvergleich EDX 2014 (LV14)

Quantitative Elementanalyse gemäß ISO 22309

Ringversuchsveranstalter	nanoAnalytics, Heisenbergstraße 11, 48149 Münster
	Laborvergleich EDX 2014 (LV14)
Material	Gold – Zinn – Yttrium - Legierung
Ergebnisabgabe	März 2014
Bewertung der Ergebnisse	alle Ergebnisse im Bereich 1s des Laborvergleiches

Statistische Betrachtung der relevanten Ergebnisse

	4.		
	Au	Sn	Y
Ø	49,5	29,0	21,5
σ	3,5	2,7	3,3
Anzahl	90	90	90
Stöchiom.	48,7	29,3	22,0

Tabelle 1 – Statistik aller quantitativen EDX-Daten

Tabelle 2 – Statistik der ausreißerbereinigten EDX-Daten

	Au	Sn	Y
Ø	49,2	29,0	21,7
σ	2,4	2,2	1,8
Anzahl	84	84	84
Stöchiom.	48,7	29,3	22,0
CRB	50,2	28,4	21,5

Diagramm 3 - Ausschnittsvergrößerung der ausreißerbereinigten EDX-Daten

Die vollständige Ergebnisdarstellung des Ringversuchsveranstalters findet sich auf den folgenden Seiten

Laborvergleich EDX 2014 (LV14)

Editor

Martin Bühner (Laborleiter REM/EDX)

Heisenbergstraße 11 48149 Münster

fon: 0251.53406.300 fax: 0251.53406.310 info@nanoanalytics.de www.nanoanalytics.de

Wir sind ein durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren. Unser QM-System entspricht den Anforderungen der ISO 9001. Die Durchführung von Laborvergleichen/Ringversuchen ist nicht akkreditiert.

Zielsetzung

Dieser Laborvergleich soll den Teilnehmern ermöglichen, die Ergebnisse ihrer EDX-Systeme miteinander zu vergleichen. Dadurch wird hauptsächlich eine Selbsteinschätzung hinsichtlich Gerät und/oder Operateur möglich. Zudem können die Teilnehmer gegenüber Dritten, z. B. im Rahmen einer Zertifizierung oder Akkreditierung nach ISO 9001 oder 17025 belegen, dass sie sich um die Validierung, Prüfmittelüberwachung usw. kümmern. Die Probe bleibt im Besitz des Teilnehmers, so dass er eine langlebige, sehr genau untersuchte Probe im Labor behält.

Zusammenfassung

Die EDX-Ergebnisse weisen eine recht hohe Streuung auf, liegen aber im Mittelwert sehr dicht an der theoretischen Zusammensetzung der Probe.

Die SDDs haben gegenüber den Si(Li)s inzwischen¹ einen Vorsprung sowohl was die Anzahl als auch die Richtigkeit der Ergebnisse angeht.

Probenmaterial und Präparation

In einem Lichtbogenofen wurden Gold, Zinn und Yttrium mehrfach auf über 2750°C erhitzt und so zu einer intermetallischen Phase mit dem stöchiometrischen Verhältnis AuSnY aufgeschmolzen. Der harte und spröde Klumpen wurde in einem Achatmörser zu kleinen Krümeln zerstoßen, deren längste Ausdehnung meist unter einem Millimeter lag. Jeder Teilnehmer erhielt einen dieser Krümel, fixiert auf einem "12 mm PLANO Leit-Tab".

Aufgabe

Die Aufgabe für die Teilnehmer lautete, die unbekannte Zusammensetzung des Krümles zu bestimmen, also sowohl die darin enthaltenen Elemente anzugeben als auch deren Massegehalt². Die Wahl der Analyseparameter wie z. B. Beschleunigungsspannung und Messzeit wurde vollständig den Teilnehmern überlassen. Auf einem beispielhaften REM-Bild wurde lediglich eine prinzipiell zu wählende Messposition markiert, und der Hinweis gegeben, Anhaftungen und Störstellen auszuweichen.

¹ Die EDX-Systeme mit SDDs dürften zwar mit aktuelleren Software-Versionen ausgestattet sein als die der Si(Li)s, aber in der Vergangenheit spielte das Alter der EDX-Software keine Rolle bei der Richtigkeit der Ergebnisse. Trotzdem kann der Fortschritt nicht *entweder* dem Detektor *oder* der Software zugesprochen werden, sondern beruht wohl auf beidem.

 $^{^{2}}$ Es sollten nur Elemente ab Natrium (Z = 11) berücksichtigt werden, also keine "Leichtelemente" wie z. B. Kohlenstoff und Sauerstoff.

Neben den Elementen und deren Konzentration wurden noch bestimmte Angaben zum verwendeten EDX-System und den Messbedingungen erfragt. Jeder Teilnehmer sollte genau ein Ergebnis über ein Formular auf unserer Website übermitteln, egal, ob es sich tatsächlich um eine einzige Messung handelte oder um einen Mittelwert aus mehreren Messungen oder Auswertestrategien. Messungen mit mehreren Geräten oder Nutzern in einer Firma waren möglich und werden unter einzelnen Teilnehmernummern aufgeführt.

Darstellung der wichtigsten Ergebnisse

Es liegen 91 EDX-Ergebnisse vor. Zusätzlich gibt es sechs Ergebnisse anderer Methoden.

Ein EDX-Teilnehmer lieferte kein quantitatives Ergebnis, weil das Signal bei ~ 1,9 keV (Yttrium) nicht befriedigend zugeordnet werden konnte. Es liegen somit 90 EDX-Datensätze mit Prozentangaben vor.

Wie häufig alle identifizierten Elemente genannt wurden, zeigt das Diagramm 1.

Diagramm 1 - Häufigkeiten der Elementnennungen innerhalb der EDX-Daten

Qualitative Elementidentifikation

Bei der EDX-Analyse können einige Artefakte als scheinbar in der Probe vorhandene Elemente fehlgedeutet werden. Es handelt sich vor allem um:

- Signalüberlappungen
 - Die unterschiedlichen Linien-Serien (K, L, M, ...) verschiedener Elemente liegen teilweise energetisch n\u00e4her beieinander als die EDX-Detektoren aufl\u00f6sen k\u00f6nnen. Das ist vor allem bei schwachen Signalen gef\u00e4hrlich, wenn die charakteristischen Formen und die Nebenlinien noch nicht deutlich zu sehen sind.
 - Hier betrifft es Elemente wie Si, P, S, Ca, Sc, Zn, Ge, Se, Rb, Nb, Ag, Te, I, Xe, W und Re, deren Hauptlinien jeweils dort liegen, wo auch Signale der drei Hauptelemente vorhanden sind.
- Summensignale (pile up)
 - Treffen zwei Röntgenquanten ,gleichzeitig' auf den EDX-Detektor, werden deren Energien addiert. Dies betrifft hauptsächlich die Elemente mit den höchsten Signalen.
 - Spielt hier keine große Rolle.
- Escape-Peaks
 - Ein im (Si-haltigen) EDX-Detektor erzeugtes Silizium-Röntgenquant kann ,unerkannt' fliehen. Dadurch einsteht ein ,Schattenspektrum', das um 1,74 keV nach links verschoben ist; betrifft also auch hauptsächlich die höchsten Signale im Spektrum.
 - Hier können Signale von Cu oder Si vorgetäuscht werden.
- Röntgenfluoreszenz
 - Atome können sowohl durch Elektronenbeschuss als auch durch Röntgenstrahlung ionisiert werden und somit Signale im EDX-Spektrum liefern. Während für die erste Variante ein ,Überspannungsverhältnis' von zwei bis fünf optimal ist, klappt die zweite Variante am besten, wenn die Röntgenstrahlungsenergie des *einen* Atoms nur minimal über der Ionisationsenergie des *anderen* liegt.
 - Hier betrifft dies vor allem die intensiv emittierenden Linien Au-M und Y-L, die – sofern in der Umgebung vorhanden - Si oder auch Al³ anregen können.

Die Entscheidung, welche Elemente als sicher vorhanden angenommen werden können, ist selbst bei Kenntnis aller Daten nicht einfach zu treffen. Aufgrund der Probenbeschaffenheit und –geometrie war es diesmal auch für die "anderen" Verfahren nicht einfach, diese Frage befriedigend zu beantworten.

³ Ein Teilnehmer berichtete glaubwürdig, dass das Aluminiumsignal, das auch er in seinen Spektren fand, mit sehr hoher Wahrscheinlichkeit auf die aus Aluminium gefertigten Teile in der Probenkammer zurückzuführen sei.

Quantitative Analyse

Zumeist liegen die quantitativen Angaben zu den "Nicht-Hauptelementen" in Summe unter 2%; bei drei Teilnehmern (LV14-06, - 12 und -14) jedoch bei 11% bis 26%. Dennoch wurden zunächst auch deren Werte für die drei Elemente Gold, Zinn und Yttrium auf 100% normiert und erst dann einem Ausreißertest unterzogen. Der Yttrium-Wert des Teilnehmers, der gar kein Yttrium genannt hatte, wurde auf 0% gesetzt.

Ausreißertest

Für jedes der drei Hauptelemente wurde aus allen Daten der Mittelwert und die Standardabweichung der Stichprobe (Sigma σ) berechnet und die 3- σ -Grenze als Kriterium angesetzt. Dabei fallen iterativ folgende Teilnehmer (mit Grund) aus der weiteren statistischen Betrachtung.

- LV14-20 (Y, Au)
- LV14-59 (Y)
- LV14-05 (Y)
- LV14-39 (Sn, Au)
- LV14-06 (Au)
- LV14-15 (Au)

Von den 90 Ergebnissen⁴ (Statistik s. Tabelle 1) bleiben somit 84 übrig (s. Tabelle 2). Vor allem die Standardabweichung sinkt merklich, wenn die Ausreißer entfernt werden.

Tabelle 1 – Statistik aller quantitativen EDX-Daten; identisch mit Tabelle 3 auf Seite 6

	Au	Sn	Y
Ø	49,5	29,0	21,5
σ	3,5	2,7	3,3
Anzahl	90	90	90
Stöchiom.	48,7	29,3	22,0

Tabelle 2 - Statistik der ausreißerbereinigten EDX-Daten; identisch mit Tabelle 4 auf Seite 7

	Au	Sn	Y
Ø	49,2	29,0	21,7
σ	2,4	2,2	1,8
Anzahl	84	84	84
Stöchiom.	48,7	29,3	22,0

⁴ Alle Daten wurden den Teilnehmern als Excel-Tabelle zusammen mit diesem Bericht zugeschickt.

Da die Datensätze aus drei Elementen bestehen, die zusammen 100% ergeben, bieten sich ternäre Diagramme zur Visualisierung an.

Ein vollständiges ternäres Diagramm zeigt für alle drei Elemente den Konzentrationsbereich von 0% bis 100%. Jeder Punkt im Dreieck entspricht einer Kombination aus drei Konzentrationen, die zusammen 100% ergeben.

In (fast allen) folgenden Diagrammen wird folgende Notation verwendet:

- roter Punkt: einzelnes EDX-Ergebnis
- schwarzes Quadrat: Mittelwert der dargestellten Einzelwerte
- blauer Punkt: stöchiometrische Zusammensetzung der Probe: AuSnY

	Au	Sn	Y
Ø	49,5	29,0	21,5
σ	3,5	2,7	3,3
Anzahl	90	90	90
Stöchiom.	48,7	29,3	22,0

Tabelle 3 – passend zu Diagramm 2, bereits bekannt als Tabelle 1 auf Seite 5

Um die einzelnen Datenpunkte besser erkennen zu können, zeigen die folgenden Diagramme nur einen Ausschnitt des ternären Diagramms, auch wenn darin *ein* Wert (LV14-63) nicht dargestellt werden kann.

Diagramm 3 - Ausschnittsvergrößerung der ausreißerbereinigten EDX-Daten

	Au	Sn	Y
Ø	49,2	29,0	21,7
σ	2,4	2,2	1,8
Anzahl	84	84	84
Stöchiom.	48,7	29,3	22,0

Tabelle 4 – passend zu Diagramm 3, bereits bekannt als Tabelle 2 auf Seite 5

Kommentare / Diskussion

Zwei Kommentare tauchten häufig auf:

- Die Quantifizierung sei ungenau, da eine ebene waagerechte Messfläche fehle.
 - Richtig, darauf sind wohl fast alle Schwankungen der Werte zurückzuführen.
 Dies trifft aber im Laboralltag häufig zu; die Probe war *real*, nicht *ideal*, so dass ,nur' ein *bestmögliches* Ergebnis erzielt werden konnte.
- Die Probe sei inhomogen.
 - Ich gebe folgende Punkte zu bedenken:
 - Die drei Elemente Gold, Zinn und Yttrium sollen sich theoretisch nur zu der intermetallischen Phase mit fester Stöchiometrie mischen.
 - Das Ergebnis der Einkristall-Röntgendiffraktometrie passt zu dieser Annahme.
 - Der Mittelwert einer Vielzahl vertrauenswürdiger Messergebnisse liegt sehr dicht an der stöchiometrischen Zusammensetzung.
 - Die Volumenanalyse ICP-OES liegt ebenso wie die deutlich tiefer ins Material reichenden µRFA-Analysen dicht an der stöchiometrischen Zusammensetzung.
 - EDX-Teilnehmer beobachteten deutliche Schwankungen, wenn sie nur die Auswertestrategie änderten und z. B. mit der Gold-L- oder Gold-M-Linie quantifizierten. Dieses Verhalten passt entweder zu schlechten Daten in der Software, zu einer katastrophal inhomogenen Probe (z. B. Schichten innerhalb des Wechselwirkungsvolumens) oder zu einer nicht waagerechten Probe.

Rund 70 Bruchstücke der Originalprobe wurden insgesamt 96-mal untersucht. Von den Daten sollten neun Ergebnisse (EDX und ,andere') unberücksichtigt bleiben, da sie ungewöhnliche Abweichungen aufweisen. Der Mittelwert der 87 vertrauenswürdigen Ergebnisse bestätigt die theoretisch erwartete Stöchiometrie der Probe mit der Summenformel AuSnY und ist damit

- sowohl ein weiteres Bespiel für die 1907 von Francis Galton im Magazin 'Nature' unter dem Titel 'Vox Populi' veröffentlichte 'Intelligenz der Masse'
- als auch ein beweiskräftiges Indiz, dass alle an die Teilnehmer versandten Proben gleich und homogen zusammengesetzt waren.⁵

⁵ ausgenommen anhaftende Verunreinigungen, denen ausgewichen werden sollte

Anhang

Diagramm 4 - ausreißerbereinigte Werte (EDX rot, ,andere' grün) mit Gesamtmittelwert (schwarz)

	Au	Sn	Y
Ø	49,3	29,0	21,7
σ	2,3	2,2	1,8
Anzahl	87	87	87
Stöchiom.	48,7	29,3	22,0

Tabelle 5 – passend zu Diagramm 4

Auf den folgenden Seiten werden die Datenpunkte aus Diagramm 4 nach bestimmten Kriterien gefiltert. Die Darstellung erfolgt ohne Achsen-Beschriftung, zeigt aber immer den aus Diagramm 4 bekannten Bereich.

Diagramm 5 – ausreißerbereinigte EDX-Daten von SDD-Detektoren

	Au	Sn	Y
Ø	48,8	29,2	22,0
σ	2,2	2,1	1,8
Anzahl	54	54	54
Stöchiom.	48,7	29,3	22,0

Tabelle 6 – passend zu Diagramm 5

Diagramm 6 – ausreißerbereinigte EDX-Daten von Si(Li)-Detektoren

-		,	
	Au	Sn	Y
Ø	50,0	28,7	21,3
σ	2,4	2,5	1,6
Anzahl	30	30	30
Stöchiom.	48,7	29,3	22,0

Tabelle 7 – passend zu Diagramm 6

Diagramm 7 – ausreißerbereinigte EDX-Daten von Ametek/EDAX-Geräten

1		·	
	Au	Sn	Y
Ø	49,2	28,8	22,0
σ	2,9	2,1	1,7
Anzahl	13	13	13
Stöchiom.	48,7	29,3	22,0

Tabelle 8 – passend zu Diagramm 7

Diagramm 8 - ausreißerbereinigte EDX-Daten von Bruker/RÖNTEC-Geräten

-	-		
_	Au	Sn	Y
Ø	48,1	29,1	22,8
σ	1,9	1,8	1,9
Anzahl	24	24	24
Stöchiom.	48,7	29,3	22,0

Tabelle 9 – passend zu Diagramm 8

Diagramm 9 - ausreißerbereinigte EDX-Daten von OXFORD-Geräten

	Au	Sn	Y
Ø	50,0	28,7	21,3
σ	2,3	2,3	1,5
Anzahl	35	35	35
Stöchiom.	48,7	29,3	22,0

Tabelle 10 – passend zu Diagramm 9

Diagramm 10 - ausreißerbereinigte EDX-Daten von Thermo/Noran-Geräten

-			
	Au	Sn	Y
Ø	47,9	31,3	20,9
σ	2,3	2,4	1,3
Anzahl	6	6	6
Stöchiom.	48,7	29,3	22,0

Tabelle 11 – passend zu Diagramm 10

Diagramm 11 – ausreißerbereinigte EDX-Daten, die mit Au-M quantifiziert wurden

1	•		
	Au	Sn	Y
Ø	49,7	28,7	21,6
σ	2,0	2,1	1,3
Anzahl	36	36	36
Stöchiom.	48,7	29,3	22,0

Tabelle 12 – passend zu Diagramm 11

Diagramm 12 – ausreißerbereinigte EDX-Daten, die mit Au-L quantifiziert wurden

rubene 15 pussene zu Diagramm 12				
mit Y-K	Au	Sn	Y	
Ø	49,4	29,2	21,4	
σ	2,2	2,2	2,5	
Anzahl	18	18	18	
Stöchiom.	48,7	29,3	22,0	

Tabelle 13 – passend zu Diagramm 12

Tabelle 14 – passend zu Diagramm 12

mit Y-L	Au	Sn	Y
Ø	47,8	29,8	22,5
σ	2,6	2,1	1,8
Anzahl	21	21	21
Stöchiom.	48,7	29,3	22,0

Diagramm 13 - ausreißerbereinigte EDX-Daten, die mit mehreren Linien-Serien quantifiziert wurden

	Au	Sn	Y	
Ø	50,2	28,7	21,2	
σ	2,5	2,9	1,5	
Anzahl	8	8	8	
Stöchiom.	48,7	29,3	22,0	

Tabelle 15 – passend zu Diagramm 13

Diagramm 14 – ausreißerbereinigte EDX-Daten, die mit 10 kV aufgenommen wurden

-	6		
	Au	Sn	Y
Ø	48,7	28,3	23,1
σ	3,0	2,0	1,0
Anzahl	3	3	3
Stöchiom.	48,7	29,3	22,0

Tabelle 16 – passend zu Diagramm 14

Diagramm 15 – ausreißerbereinigte EDX-Daten, die mit 15 kV aufgenommen wurden

1			
	Au	Sn	Y
Ø	48,7	29,2	22,2
σ	3,1	2,3	1,5
Anzahl	10	10	10
Stöchiom.	48,7	29,3	22,0

Tabelle 17 –passend zu Diagramm 15

Diagramm 16 – ausreißerbereinigte EDX-Daten, die mit 20 kV aufgenommen wurden

1	8		
	Au	Sn	Y
Ø	49,2	29,0	21,8
σ	2,3	2,2	1,6
Anzahl	42	42	42
Stöchiom.	48,7	29,3	22,0

Tabelle 18 – passend zu Diagramm 16

Diagramm 17 – ausreißerbereinigte EDX-Daten, die mit 25 kV aufgenommen wurden

1			
	Au	Sn	Y
Ø	48,3	28,6	23,1
σ	2,0	1,7	1,4
Anzahl	9	9	9
Stöchiom.	48,7	29,3	22,0

Tabelle 19 – passend zu Diagramm 17

Diagramm 18 – ausreißerbereinigte EDX-Daten, die mit 30 kV aufgenommen wurden

1	8		
	Au	Sn	Y
Ø	50,1	29,3	20,6
σ	2,1	2,6	2,6
Anzahl	12	12	12
Stöchiom.	48,7	29,3	22,0

Tabelle 20 – passend zu Diagramm 18

Diagramm 19 – ausreißerbereinigte EDX-Daten, die mit mehreren Beschleunigungsspannungen aufgenommen wurden

	Au	Sn	Y
Ø	49,9	29,6	20,5
σ	2,7	2,8	0,8
Anzahl	8	8	8
Stöchiom.	48,7	29,3	22,0

Tabelle 21 – passend zu Diagramm 19

Diagramm 20 – "andere" Verfahren (2x WDX, 2x µRFA, TXRF, ICP-OES), der TXRF-Ausreißer-Wert ist nicht im Ausschnitt zu sehen

	Au	Sn	Y	
LV14-53	49,3	28,8	21,9	μ-RFA
LV14-66	50,0	28,6	21,4	WDX
LV14-101	48,4	29,7	21,9	WDX
LV14-102	49,6	26,8	23,6	ICP-OES
LV14-103	42,0	37,0	20,9	TXRF
LV14-104	49,7	29,3	21,0	μRFA

Tabelle 22 - passend zu Diagramm 20, kursive Werte sind Ausreißer

Ø	49,4	28,6	21,9
σ	0,6	1,1	1,0
Anzahl	5	5	5
Stöchiom.	48,7	29,3	22,0

Teilnehmerliste (in alphabetischer Reihenfolge)

Analytik Aurachtal AREVA, Erlangen BAM Bundesanstalt für Materialforschung und -prüfung, Berlin BASF Coatings, Münster Bruker Nano, Berlin CiS Forschungsinstitut für Mikrosensorik und Photovoltaik, Erfurt CRB Analyse Service, Hardegsen Currenta, Leverkusen Deutsche Edelstahlwerke, Witten Forschungsinstitut für Edelmetalle und Metallchemie, Schwäbisch-Gmünd Fraunhofer-Institut für Silicatforschung ISC, Würzburg GSI mbH Niederlassung SLV Berlin-Brandenburg, Berlin HARTING, Espelkamp Heraeus Materials Technology, Hanau IfG - Institute for Scientific Instruments, Berlin IFOS, Kaiserslautern IFU Gewerbliches Institut für Fragen des Umweltschutzes, Heitersheim Ingenieur-Gemeinschaft Meyer & Horn-Samodelkin, Rostock Kantonspolizei Bern **KRONOS** International, Leverkusen Labor Dr. Schäffner, Solingen Landeskriminalamt Niedersachsen, Hannover Leibniz-Institut für Photonische Technologien, Jena Leibniz-Institut für Polymerforschung Dresden Microscan Service, Chavannes-près-Renens nanoAnalytics, Münster Osram, Berlin Paul-Drude-Institut für Festkörperelektronik, Berlin Quality Analysis, Dettingen unter Teck RHI, Leoben Robert Bosch, Standorte Ansbach, Bamberg, Homburg, Schwieberdingen und Stuttgart Rockwell Automation, Aarau Salzgitter Mannesmann Forschung, Duisburg SAS hagmann, Horb am Neckar Schoeller Technocell, Osnabrück SGS INSTITUT FRESENIUS, Standorte Dortmund und Dresden Synthes, Oberdorf TAZ, Eurasburg ThyssenKrupp Industrial Solutions, Ennigerloh ThyssenKrupp Steel Europe, Duisburg

Universitäten und (Fach)hochschulen

- Carl von Ossietzky Universität Oldenburg
- Fachhochschule Kaiserslautern, Zweibrücken
- Hochschule für angewandte Wissenschaften Deggendorf
- Hochschule Ostwestfalen-Lippe, Lemgo
- Leibniz Universität Hannover, Garbsen
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen (NMI), Reutlingen
- Staatliche Materialprüfungsanstalt Darmstadt
- Technische Universität Berlin
- Universität Bayreuth

W.S. Werkstoff-Service, Essen

Wieland Werke, Ulm

Zentrum für Werkstoffanalytik Lauf, Lauf an der Pegnitz

Schlussbemerkung – Ende der Ergebnisdarstellung

Die in diesem Bericht zusammengefassten Analyseergebnisse beruhen ausschließlich auf den durch die Teilnehmer zur Verfügung gestellten Daten. Diese wurden wahrscheinlich aus dem durch uns versendeten Probenmaterial gewonnen und spiegeln den jeweils untersuchten Probenbereich zum Zeitpunkt der Analyse wider. Weitergehende Schlussfolgerungen auf Basis dieser Befunde liegen im alleinigen Verantwortungsbereich der Teilnehmer bzw. desjenigen, dem dieser Ergebnisbericht vorliegt.