Bahnhofstraße 14 // D-37181 Hardegsen // T +49 (0)5505 94098-0 Geschäftsführer: Ralf Klaus Blecher // Amtsgericht Göttingen HRB 130263 www.crb-gmbh.de // labor@crb-gmbh.de # RFA Ringversuch Central Geological Laboratory of Mongolia - CGL-206 - MBTB, Iron Concentrate Veranstalter des Ringversuchs: Central Geological Laboratory of Mongolia (CGL) Ringversuchsmaterial: CGL 206 (MBTB, Iron Concentrate) RV geschlossen: 2017 - 3 Literatur: Reference Material Certificate CGL #### **Hauptelemente** [MA%] | | CRB | RV | 1sRV | Z-Score | |---------------------|--------|--------|-------|---------| | SiO ₂ | 5,990 | 5,860 | 0,570 | 0,230 | | TiO ₂ | 0,086 | 0,080 | 0,010 | 0,640 | | Al_2O_3 | 1,280 | 1,250 | 0,080 | 0,310 | | Fe _{total} | 51,000 | 50,890 | 0,910 | 0,140 | | MnO | 0,123 | 0,110 | 0,010 | 1,280 | | MgO | 4,980 | 4,930 | 0,160 | 0,300 | | CaO | 5,850 | 5,870 | 0,170 | -0,120 | | K_2O | 0,240 | 0,240 | 0,020 | 0,040 | | P_2O_5 | 0,050 | 0,050 | 0,000 | 0,080 | #### Spurenelemente [µg/g] | | CRB | RV | 1sRV | Z-Score | |-----|--------|--------|-------|---------| | As* | 30,00 | 27,00 | | | | Ba* | 21,00 | 25,00 | | | | Со | 82,00 | 91,00 | 7,00 | -1,18 | | Cr* | 20,00 | 20,00 | | | | Cu | 518,00 | 418,00 | 57,00 | 1,77 | | Ni | 97,00 | 114,00 | 19,00 | -0,94 | | Pb | 55,00 | 45,00 | 7,00 | 1,65 | | Sr | 16,00 | 22,00 | 3,00 | -1,92 | | V | 191,00 | 266,00 | 39,00 | -1,92 | | Zn | 779,00 | 703,00 | 40,00 | 1,90 | #### Legende **CRB:** Ergebnisse CRB – **RV:** Ergebnisse Ringversuch -- **1s-RV:** Standardabweichung Ringversuch **Z-Score:** Differenz des Messwertes vom Mittelwert des Ringversuchs -- * Wert nicht zertifiziert ### MONGOLIA CENTRAL GEOLOGICAL LABORATORY ## REFERENCE MATERIAL CERTIFICATE (Certified reference material) #### CGL 206 MBTB (IRON CONCENTRATE) #### Certified values | \mathcal{N}_{Ω} | Oxide/element | Unit | CV' | U_{CRM}^{2} | N^3 | |------------------------|---------------------|-------|-------|---------------|-------| | 1 | SiO ₂ | % m/m | 5.86 | 0.57 | 11 | | 2 | TiO ₂ | % m/m | 0.08 | 0.01 | 12 | | 3 | Al_2O_3 | % m/m | 1.25 | 0.08 | 13 | | 4 | Fe _{total} | % m/m | 50.87 | 0.91 | 14 | | 5 | MnO | % m/m | 0.11 | 0.01 | 14 | | 6 | MgO | % m/m | 4.93 | 0.16 | 10 | | 7 | CaO | % m/m | 5.87 | 0.17 | 11 | | 8 | K ₂ O | % m/m | 0.24 | 0.02 | 10 | | 9 | P_2O_5 | % m/m | 0.048 | 0.003 | 10 | | 10 | Co | mg/kg | 90.56 | 7.16 | 13 | | 11 | Cu | mg/kg | 418.1 | 56.6 | 13 | | 12 | Ni | mg/kg | 114.3 | 18.7 | 13 | | 13 | Pb | mg/kg | 44.46 | 6.50 | 10 | | 14 | Sr | mg/kg | 22.38 | 3.36 | 10 | | 15 | V | mg/kg | 265.5 | 38.9 | 12 | | 16 | Zn | mg/kg | 703.2 | 39.9 | 13 | Certified value (CV) – based on a minimum of 10 results with a minimum of 2 independent methods Estimated expanded uncertainty (U_{CRM}) - with a coverage factor k=2, corresponding to a level of confidence of about 95 %, as defined in ISO/IEC GUIDE 98-3:2008 "Uncertainty of measurement Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995)" ³ Number of datasets (N) #### **Additional Information** | No | Oxide/element | Unit | IV⁴ | N^3 | |----|--------------------|-------|-------|-------| | 1 | Na ₂ O | % m/m | 0.10 | 7 | | 2 | S _{total} | % m/m | 2.60 | 6 | | 3 | LOI* | % m/m | 4.59 | 8 | | 4 | As | mg/kg | -27.0 | 9 | | 5 | Ba | mg/kg | 25.1 | 10 | | 6 | Cr | mg/kg | 20.2 | 9 | | 7 | La | mg/kg | 2.9 | 5 | ⁴ Indicative value (IV) – one certification criteria is not fulfilled #### Intended uses of this Certified Reference Material (CRM) Based on defined metrological characteristics-metrological traceability of assigned property values and associated measurement uncertainties also physical characteristics – homogeneity and small particle size, this CRM is suitable for method development, calibration, validation and quality assurance, quality control purposes when analyzing samples that are matrix- matched to this material. #### Description of sample The starting material, a bulk of iron concentrate was collected from the "Bayangol" deposit, at Eruu sum, Selenge province, Mongolia. This product is separated using dry magnetic separator. The mineral composition of the material has been determined to be: | $N_{\underline{0}}$ | Minerals | Percentage (% m/m) | |---------------------|---------------|--------------------| | 1 | Magnetite | 70 | | 2 | Dolomite | 15 | | 3 | Serpentenit | 6 | | 4 | Biotite | 3 | | 5 | Talc | 5 | | 6 | Clinopyroxene | J | | 7 | Hornblende | | | 8 | Sphalerite | | | 9 | Chalcopyrite |) 1 | | 10 | Pyrite | | | 11 | Pyrrhotite | | | 12 | Quartz | | ^{*}LOI - Loss on Ignition (analysed by 1000°C) #### Sample preparation The preparation, homogeneity and stability testing were performed by the CGL laboratories in 2013 - 2015. After crushing and pulverization, the entire batch of selected bulk material passed a sieve with an opening of 0.075 mm of an ultrasonic sieving machine. The pulverized bulk material was homogenized by a high performance intensive mixer. After testing the homogeneity, portions of 100 g reference material each were bottled by rotary splitting from this batch to polyethylene bottles and labeled. #### Homogeneity of material Within and between bottles homogeneity testing was performed under repeatability condition, using 10 samples randomly selected. Homogeneity test result confirmed that material is sufficiently homogeneous. #### Certification An interlaboratory approach with 13 participating laboratories was selected to obtain a reliable base of data for assignment of the certified values. A nested design was chosen for maximum information output. The traceability was established to the existing CRM – Iron ore NCS DC11010 produced at China National Analysis Center for Iron and Steel. Production and evaluation procedures for compliance with the valid ISO – Guides were assessed and certified by a Scientific and Technical Council of CGL. #### Instructions for Storage and Use The CRM should be stored at room temperature and tightly sealed to protect it from absorption of atmospheric moisture, direct sun reflection and laboratory chemicals. The material can be transported by any kind of transport means. To overcome segregation effect due to storage or transportation, the material should be shaken appropriately before opening the bottle. No material that had once been removed from the original sample bottle should be returned to it, as that might cause contamination of the remaining sample. Certified values and information values are reported on a dry weight basis (105°C, 2 h). The recommended minimum sample test portion mass is 250 mg. If a test method requires a test portion less than 250 mg, it is recommended that an excess of the CRM (>150 mg) is further pulverized in an agate mortar, before weighing out the needed mass. Material safety data sheet for this CRM is attached to this certificate. #### Period of validity This material is considered to be stable. Therefore, this certificate shall remain valid through 2026, unless users are otherwise notified. The stability of the material will be monitored regularly for duration of an inventory. #### Availability of Material This certified reference material will be classified as CGL 206 in accordance with CGL CRM classification system. It is available from the Producer: Central Geological Laboratory CGL-building Trade Union Street Songinokhairkhan District P.O.Box - 437 18080 Ulaanbaatar MONGOLIA Tel.: + (976) 70180101, 70182914 Fax: + (976) 70184212, 70182564 E-mail: info@cengeolab.com cengeolab@mbox.mn Web: www.cengeolab.com #### **Customer Feedback** Customers, using this CRM are kindly requested to register at the Central Geological Laboratory. This opens the opportunity to notify the user community on any new development with regard to this CRM. Customer feedback with respect to any information included in this certificate is highly appreciated. #### Test methods applied for this certification | Al_2O_3 | XRF (10), ICP- OES/AES (3) | Na ₂ O | XRF (5), ICP- OES/AES (2) | |------------------------------------|---------------------------------------|-------------------------------|---| | As | XRF (6), ICP- OES/AES (3) | Ni | XRF (4), ICP-MS (1), ICP- OES/AES (8) | | Ва | XRF (3), ICP-MS (1), ICP- OES/AES (6) | P ₂ O ₅ | XRF (9), SPM(1) | | CaO | XRF (10), ICP- OES/AES (1) | Pb | XRF (4), ICP-MS (1), ICP- OES/AES (5) | | Со | XRF (5), ICP-MS (1), ICP- OES/AES (7) | S | XRF (4), GRAV (1), IR (1) | | Cr | XRF (5), ICP-MS (1), ICP- OES/AES (3) | SiO ₂ | XRF (9), SPM (2) | | Cu | XRF (6), ICP-MS (1), ICP- OES/AES (6) | Sr | XRF (4), ICP-MS (1), ICP- OES/AES (5) | | Fe ₂ O _{Знийт} | XRF (10), ICP- OES/AES (2), TITR (2) | TiO ₂ | XRF (7), ICP-MS (1), ICP- OES/AES (3), SPM(1) | | K ₂ O | XRF (9), ICP- OES/AES (1) | V | XRF (6), ICP-MS (1), ICP- OES/AES (5) | | La | ICP-MS (1), ICP- OES/AES (4) | Y | XRF (1), ICP-MS (1), ICP- OES/AES (3) | | MgO | XRF (9), TITR (1) | Zn | XRF (5), ICP-MS (1), ICP- OES/AES (7) | | MnO | XRF (9), ICP- OES/AES (4), AAS(1) | ШХ | GRAV (8) | #### Abbreviations: • XRF - energy/wavelength dispersive x-ray fluorescence spectroscopy ICP- MS ICP-OES/AES Icp-oes/AES Icp-oes/AES Icp-oes/AES Inductively coupled plasma-optic/atomic emission spectroscopy AAS - atomic absorption spectroscopy SPM - spectrophotometryTITR - titrimetry • IR - Infrared spectroscopy • GRAV - gravimetry #### Participating Laboratories - 1 Central Geological Laboratory, Ulaanbaatar, Mongolia - 2 ALS Group LLC, Ulaanbaatar, Mongolia - 3 ALS Loughrea, Ireland - 4 ALS Minerals-Vancouver, Canada - 5 Geoscience Laboratories, Ontario, Canada - 6 Eurotest Control EAD, Sofia, Bulgaria - 7 Institute de Technologia Ceramica (ITC), Castelló, Spain - 8 Irgiredmet OAO Irkutsk research institute of precious and rare metals and diamonds, Irkutsk, Russia - BGR-Federal Institute for Geosciences and Natural Resources, Hannover, Germany - Dillinger Hütte GTS The chemical laboratories of Dillinger Hüttenwerke, Germany - 11 CRB Analyse Service GmbH, Germany - 12 Geochemistry-Metallogeny, France - 13 KhanLab LLC, Ulaanbaatar, Mongolia #### Legal notice Based on the decision of Scientific and Technical Council of Central Geological Laboratory on 2 November 2016, by a resolution No ... of director of CGL, this material had been approved as a Certified Reference Material with a code number CGL 206 Iron concentrate. DIRECTOR OF CENTRAL GEOLOGICAL LABORATORY **U.OYUNBAATAR**